Skip to main content
Log in

A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids

Part 1. The linear approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Glass transition temperature is one of the main criteria for the evaluation of the potential options for electrolyte application. Originally, in this communication, the attention was focused on the prediction of glass transition temperature of 1,3-dialkyl imidazolium ionic liquids which could be considered as potential future electrolytes. For this purpose, the quantitative structure–property relationship (QSPR) method is employed to develop two models for the determination of glass transition temperature. In part I of this study, genetic function approximation is applied for model’s parameter selection (molecular descriptors) and developing a linear QSPR model. The linear model tested by several validation techniques, and its stability is completely approved. The model predicts the experimental values with satisfactory results quantified by following statistical parameters: absolute average deviations (AAD): 2.68%, squared correlation coefficient: 0.91 and root mean square: 5.717 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jagadeeswara Rao C, Venkata Krishnan R, Venkatesan KA, Nagarajan K, Srinivasan TG. Thermochemical properties of some bis(trifluoromethyl-sulfonyl)imide based room temperature ionic liquids. J Therm Anal Calorim. 2009;97(3):937–43.

    Article  CAS  Google Scholar 

  2. Murillo-Hernández JA, López-Ramírez S, Domínguez JM, Duran-Valencia C, García-Cruz I, González-Guevara JA. Survey on ionic liquids effect based on metal anions over the thermal stability of heavy oil. J Therm Anal Calorim. 2009;95(1):173–9.

    Article  Google Scholar 

  3. Andrade CKZ, Matos RAF, Oliveira VB, Duraes JA, Sales MJA. Thermal study and evaluation of new menthol-based ionic liquids as polymeric additives. J Therm Anal Calorim. 2010;99(2):539–43.

    Article  CAS  Google Scholar 

  4. Stefan CS, Lemordant D, Biensan P, Siret C, Claude-Montigny B. Thermal stability and crystallization of N-alkyl-N-alkyl-pyrrolidinium imides. J Therm Anal Calorim. 2010;102(2):685–93.

    Article  CAS  Google Scholar 

  5. Zhang ZH, Cui T, Zhang JL, Xiong H, Li GP, Sun LX, et al. Thermodynamic investigation of room temperature ionic liquid: the heat capacity and thermodynamic functions of BMIPF6. J Therm Anal Calorim. 2010;101(3):1143–8.

    Article  CAS  Google Scholar 

  6. Amarasekara AS, Owereh OS. Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids. J Therm Anal Calorim. 2011;103(3):1027–30.

    Article  CAS  Google Scholar 

  7. Arellano IHJ, Guarino JG, Paredes FU, Arco SD. Thermal stability and moisture uptake of 1-alkyl-3-methylimidazolium bromide. J Therm Anal Calorim. 2011;103(2):725–30.

    Article  CAS  Google Scholar 

  8. Keating MY, Gao F, Ramsey JB. TGA-MS study of the decomposition of phosphorus-containing ionic liquids trihexyl(tetradecyl)phosphonium decanoate and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide. J Therm Anal Calorim. 2011;106(1):207–11.

    Article  CAS  Google Scholar 

  9. Porcedda S, Marongiu B, Schirru M, Falconieri D, Piras A. Excess enthalpy and excess volume for binary systems of two ionic liquids + water. J Therm Anal Calorim. 2011;103(1):29–33.

    Article  CAS  Google Scholar 

  10. Yue D, Jing Y, Ma J, Yao Y, Jia Y. Physicochemical properties of ionic liquid analogue containing magnesium chloride as temperature and composition dependence. J Therm Anal Calorim. 2011:1–8.

  11. Ohno H. Electrolytes ionic liquids. In: Jürgen G, editor. Encyclopedia of electrochemical power sources. Amsterdam: Elsevier; 2009. p. 153–9.

  12. Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries. Eur Polym J. 2006;42(1):21–42. doi:10.1016/j.eurpolymj.2005.09.017.

    Article  CAS  Google Scholar 

  13. Gray FM. Solid polymer electrolytes: fundamentals and technological applications. New York: VCH; 1991.

    Google Scholar 

  14. Meindersma GW, Maase M, De Haan AB. Ionic liquids, Ullmann’s encyclopedia of industrial chemistry. Weinham: Wiley-VCH Verlag GmbH & Co. KGaA; 2000.

    Google Scholar 

  15. Schalkwijk WAv, Scrosati B. Advances in lithium-ion batteries. New York: Kluwer Academic/Plenum; 2002.

    Book  Google Scholar 

  16. Angell CA. Glass transition. In: Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, et al., editors. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2004. p. 1–11.

    Chapter  Google Scholar 

  17. Freemantle M. An introduction to ionic liquids. Cambridge, MA: Royal Society of Chemistry; 2010. p. 2–3.

    Google Scholar 

  18. Gharagheizi F. QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network. QSAR Comb Sci. 2008;27(2):165–70.

    Article  CAS  Google Scholar 

  19. Vatani A, Mehrpooya M, Gharagheizi F. Prediction of standard enthalpy of formation by a QSPR model. Int J Mol Sci. 2007;8(5):407–32.

    Article  CAS  Google Scholar 

  20. Gharagheizi F, Sattari M, Tirandazi B. Prediction of crystal lattice energy using enthalpy of sublimation: A group contribution-based model. Ind Eng Chem Res. 2011;50(4):2482–6.

    Google Scholar 

  21. Gharagheizi F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci. 2007;40(1):159–67.

    Article  CAS  Google Scholar 

  22. Gharagheizi F. Quantitative structure–property relationship for prediction of the lower flammability limit of pure compounds. Energy Fuels. 2008;22(5):3037–9.

    Article  CAS  Google Scholar 

  23. Gharagheizi F. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. J Hazard Mater. 2009;169(1–3):217–20.

    Article  CAS  Google Scholar 

  24. Gharagheizi F, Eslamimanesh A, Mohammadi AH, Richon D. QSPR approach for determination of parachor of non-electrolyte organic compounds. Chem Eng Sci. 2011;66(13):2959–67.

    Article  CAS  Google Scholar 

  25. Gharagheizi F, Gohar MRS, Vayeghan MG. A quantitative structure–property relationship for determination of enthalpy of fusion of pure compounds. J Therm Anal Calorim. 2011:1–6.

  26. Gharagheizi F, Babaie O, Mazdeyasna S. Prediction of vaporization enthalpy of pure compounds using a group contribution-based method. Ind Eng Chem Res. 2011;50(10):6503-7.

    Article  CAS  Google Scholar 

  27. Gharagheizi F, Tirandazi B, Barzin R. Estimation of aniline point temperature of pure hydrocarbons: a quantitative structure–property relationship approach. Ind Eng Chem Res. 2009;48(3):1678–82.

    Article  CAS  Google Scholar 

  28. Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35(5):1168–78. doi:10.1021/ic951325x.

    Article  Google Scholar 

  29. Branco LC, Rosa JN, Moura Ramos JJ, Afonso CAM. Preparation and characterization of new room temperature ionic liquids. Chem A Eur J. 2002;8(16):3671–7. doi:10.1002/1521-3765(20020816)8:16<3671:AID-chem3671>3.0.co;2-9.

    Article  CAS  Google Scholar 

  30. Cha EH, Lim SA, Park JH, Kim DW, Macfarlane DR. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid. J Power Sources. 2008;178(2):779–82. doi:10.1016/j.jpowsour.2007.10.033.

    Article  CAS  Google Scholar 

  31. Chun S, Dzyuba SV, Bartsch RA. Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal Salt extraction by a crown ether. Anal Chem. 2001;73(15):3737–41. doi:10.1021/ac010061v.

    Article  CAS  Google Scholar 

  32. Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn. 2005;37(6):559–68. doi:10.1016/j.jct.2005.03.013.

    Article  CAS  Google Scholar 

  33. D. Holbrey J, R. Seddon K. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans. 1999(13):2133–40.

  34. Domańska U, Bogel-Łukasik E, Bogel-Łukasik R. 1-Octanol/water partition coefficients of 1alkyl-3-methylimidazolium chloride. Chem A Eur J. 2003;9(13):3033–41. doi:10.1002/chem.200204516.

    Article  Google Scholar 

  35. Dzyuba SV, Bartsch RA. Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem. 2002;3(2):161–6. doi:10.1002/1439-7641(20020215)3:2<161:aid-cphc161>3.0.co;2-3.

    Article  CAS  Google Scholar 

  36. Dzyuba SV, Bartsch RA. Expanding the polarity range of ionic liquids. Tetrahedron Lett. 2002;43(26):4657–9. doi:10.1016/s0040-4039(02)00858-4.

    Article  CAS  Google Scholar 

  37. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data. 2004;49(4):954–64. doi:10.1021/je034261a.

    Article  CAS  Google Scholar 

  38. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127(8):2398–9. doi:10.1021/ja043451i.

    Article  CAS  Google Scholar 

  39. Holbrey JD, Turner MB, Reichert WM, Rogers RD. New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem. 2003;5(6):731. doi:10.1039/b311717k.

    Article  CAS  Google Scholar 

  40. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3(4):156–64. doi:10.1039/b103275p.

    Article  CAS  Google Scholar 

  41. J. Earle M, B. McCormac P, R. Seddon K. Regioselective alkylation in ionic liquids. Chem Commun. 1998(20):2245–6.

  42. Jodry JJ, Mikami K. New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding. Tetrahedron Lett. 2004;45(23):4429–31. doi:10.1016/j.tetlet.2004.04.063.

    Article  CAS  Google Scholar 

  43. Kulkarni PS, Branco LC, Crespo JG, Nunes MC, Raymundo A, Afonso CAM. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem A Eur J. 2007;13(30):8478–88. doi:10.1002/chem.200700965.

    Article  CAS  Google Scholar 

  44. MacFarlane DR, Golding J, Forsyth S, Forsyth M, Deacon GB. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun. 2001;16:1430–1.

    Article  Google Scholar 

  45. Matsumoto K, Hagiwara R. A new room temperature ionic liquid of oxyfluorometallate anion: 1-ethyl-3-methylimidazolium oxypentafluorotungstate (EMImWOF5). J Fluor Chem. 2005;126(7):1095–100. doi:10.1016/j.jfluchem.2005.03.018.

    Article  CAS  Google Scholar 

  46. Matsumoto K, Hagiwara R, Ito Y. Room temperature molten fluorometallates: 1-ethyl-3-methylimidazolium hexafluoroniobate(V) and hexafluorotantalate(V). J Fluor Chem. 2002;115(2):133–5. doi:10.1016/s0022-1139(02)00037-4.

    Article  CAS  Google Scholar 

  47. McEwen AB, Ngo HL, LeCompte K, Goldman JL. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc. 1999;146(5):1687–95. doi:10.1149/1.1391827.

    Article  CAS  Google Scholar 

  48. Moura Ramos J, Afonso C, Branco L. Glass transition relaxation and fragility in two room temperature ionic liquids. J Therm Anal Calorim. 2003;71(2):659–66. doi:10.1023/a:1022884716750.

    Article  CAS  Google Scholar 

  49. Mu ZG, Zhou F, Zhang SX, Liang YM, Liu WM. Preparation and characterization of new phosphonyl-substituted imidazolium ionic liquids. Helvetica Chimica Acta. 2004;87(10):2549–55. doi:10.1002/hlca.200490227.

    Article  CAS  Google Scholar 

  50. Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357–358:97–102. doi:10.1016/s0040-6031(00)00373-7.

    Article  Google Scholar 

  51. Nishida T. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluor Chem. 2003;120(2):135–41. doi:10.1016/s0022-1139(02)00322-6.

    Article  CAS  Google Scholar 

  52. Noda A, Hayamizu K, Watanabe M. Pulsed-gradient spin−echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B. 2001;105(20):4603–10. doi:10.1021/jp004132q.

    Article  CAS  Google Scholar 

  53. Ogihara W, Washiro S, Nakajima H, Ohno H. Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim Acta. 2006;51(13):2614–9. doi:10.1016/j.electacta.2005.07.043.

    Article  CAS  Google Scholar 

  54. Ohno H. Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionics. 2002;154–155:303–9. doi:10.1016/s0167-2738(02)00526-x.

    Article  Google Scholar 

  55. Omotowa BA, Shreeve JnM. Triazine-based polyfluorinated triquaternary liquid salts: synthesis, characterization, and application as solvents in rhodium(I)-catalyzed hydroformylation of 1-octene. Organometallics. 2004;23(4):783–91. doi:10.1021/om0342311.

    Article  CAS  Google Scholar 

  56. Ouadi A, Gadenne B, Hesemann P, Moreau JJE, Billard I, Gaillard C, et al. Task-specific ionic liquids bearing 2-hydroxybenzylamine units: synthesis and americium-extraction studies. Chem A Eur J. 2006;12(11):3074–81. doi:10.1002/chem.200500741.

    Article  CAS  Google Scholar 

  57. Park HS, Choi YS, Jung YM, Hong WH. Intermolecular interaction-induced hierarchical transformation in 1D nanohybrids: analysis of conformational changes by 2D correlation spectroscopy. J Am Chem Soc. 2007;130(3):845–52. doi:10.1021/ja073074k.

    Article  Google Scholar 

  58. Pringle JM, Golding J, Baranyai K, Forsyth CM, Deacon GB, Scott JL, et al. The effect of anion fluorination in ionic liquids-physical properties of a range of bis(methanesulfonyl)amide salts. New J Chem. 2003;27(10):1504–10.

    Article  CAS  Google Scholar 

  59. Qi M, Wu G, Li Q, Luo Y. γ-Radiation effect on ionic liquid [bmim][BF4]. Radiat Phys chem. 2008;77(7):877–83. doi:10.1016/j.radphyschem.2007.12.007.

    Article  CAS  Google Scholar 

  60. Sato T. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochimica Acta. 2004;49(21):3603–11. doi:10.1016/j.electacta.2004.03.030.

    Article  CAS  Google Scholar 

  61. Song Y, Liu L, Zhu X, Wang X, Jia H, Xiao X, et al. Physicochemical properties of ionic liquids based on imidazolium/pyrrolidinium cations and maleate/phthalate anions. Solid State Ionics. 2008;179(13–14):516–21. doi:10.1016/j.ssi.2008.03.035.

    Article  CAS  Google Scholar 

  62. Strechan AA, Paulechka YU, Blokhin AV, Kabo GJ. Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn. 2008;40(4):632–9. doi:10.1016/j.jct.2007.11.004.

    Article  CAS  Google Scholar 

  63. Suarez PAZ, Dullius JEL, Einloft S, De Souza RF, Dupont J. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron. 1996;15(7):1217–9. doi:10.1016/0277-5387(95)00365-7.

    Article  CAS  Google Scholar 

  64. Suarez PAZ, Einloft S, Dullius JEL, De Souza RF, Dupont J. Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. Journal de Chimie Physique et de Physico-Chimie Biologique. 1998;95(7):1626–39.

    Article  CAS  Google Scholar 

  65. Tosoni M, Laschat S, Baro A. Synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals. Helvetica Chimica Acta. 2004;87(11):2742–9. doi:10.1002/hlca.200490247.

    Article  CAS  Google Scholar 

  66. Valkenburg M, Vaughn R, Williams M, Wilkes J. Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta. 2005;425(1–2):181–8. doi:10.1016/j.tca.2004.11.013.

    Article  Google Scholar 

  67. Visser Ann E, Reichert WM, Swatloski Richard P, Willauer Heather D, Huddleston Jonathan G, Rogers Robin D. Characterization of hydrophilic and hydrophobic ionic liquids: alternatives to volatile organic compounds for liquid–liquid separations. Ionic liquids. ACS symposium Series 818. Washington DC: American Chemical Society; 2002. p. 289–308.

  68. Xu W, Wang L-M, Nieman RA, Angell CA. Ionic liquids of chelated orthoborates as model ionic glassformers. J Phys Chem B. 2003;107(42):11749–56. doi:10.1021/jp034548e.

    Article  CAS  Google Scholar 

  69. Yagupolskii YL, Sokolenko TM, Petko KI, Yagupolskii LM. Novel ionic liquids—Imidazolium salts with a difluoromethylene fragment directly bonded to the nitrogen atom. J Fluor Chem. 2005;126(4):669–72.

    Article  CAS  Google Scholar 

  70. Ye C, Shreeve JNM. Syntheses of very dense halogenated liquids. J Org Chem. 2004;69(19):6511–3. doi:10.1021/jo0490649.

    Article  CAS  Google Scholar 

  71. Yeon S, Kim K, Choi S, Lee H, Kim H. Physical and electrochemical properties of 1-(2-hydroxyethyl)-3-methyl imidazolium and N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids. Electrochimica Acta. 2005;50(27):5399–407. doi:10.1016/j.electacta.2005.03.020.

    Article  CAS  Google Scholar 

  72. Yoshida Y, Muroi K, Otsuka A, Saito G, Takahashi M, Yoko T. 1-Ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorg Chem. 2004;43(4):1458–62. doi:10.1021/ic035045q.

    Article  CAS  Google Scholar 

  73. Zhou Z-B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem A Eur J. 2004;10(24):6581–91. doi:10.1002/chem.200400533.

    Article  CAS  Google Scholar 

  74. Zhou Z-B, Matsumoto H, Tatsumi K. Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates. ChemPhysChem. 2005;6(7):1324–32. doi:10.1002/cphc.200500094.

    Article  CAS  Google Scholar 

  75. Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure–property relationships. J Chem Inf Comput Sci. 1994;34(4):854–66.

    Article  CAS  Google Scholar 

  76. Friedman JH. Multivariate adaptive regression splines. Ann Stat. 1991;19(1):1–67. doi:10.1214/aos/1176347963.

    Article  Google Scholar 

  77. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1st ed. Cambridge, MA: MIT Press; 1992.

    Google Scholar 

  78. Ahmed SSSJ, Ahameethunisa A, Santosh W. QSAR and pharmacophore modeling of 4-arylthieno [3, 2-d] pyrimidine derivatives against adenosine receptor of Parkinson’s disease. J Theor Comput Chem. 2010;9(6):975–91.

    Article  CAS  Google Scholar 

  79. Chhabria MT, Jani M, Parmar K, Singh M. QSAR study of a series of 2,3-dihydroimidazo[1,2-c]pyrimidines as antibacterial agents. Medicinal Chemistry Research. 2010:1–8.

  80. Chhabria MT, Suhagia BN, Mandhare AB, Brahmkshatriya PS. QSAR study of a series of cholesteryl ester transfer protein inhibitors. Collect Czech Chem Commun. 2011;76(7):803–13.

    Article  CAS  Google Scholar 

  81. Khaled KF. Modeling corrosion inhibition of iron in acid medium by genetic function approximation method: a QSAR model. Corros Sci. 2011;53(11):3457–65.

    Google Scholar 

  82. Ojha PK, Roy K. Chemometric modelling of antimalarial activity of aryltriazolylhydroxamates. Mol Simul. 2010;36(12):939–52.

    Article  CAS  Google Scholar 

  83. Reyes OJ, Patel SJ, Mannan MS. Quantitative structure property relationship studies for predicting dust explosibility characteristics (Kst, Pmax) of organic chemical dusts. Ind Eng Chem Res. 2011;50(4):2373–9.

    Article  CAS  Google Scholar 

  84. Sivakumar PM, Iyer G, Doble M. QSAR studies on substituted 3- or 4-phenyl-1,8-naphthyridine derivatives as antimicrobial agents. Med Chem Res. 2011:1–8.

  85. Gharagheizi F. An accurate model for prediction of autoignition temperature of pure compounds. J Hazard Mater. 2011;189(1–2):211–21.

    Google Scholar 

  86. Liu H, Yao X, Zhang R, Liu M, Hu Z, Fan B. Accurate quantitative structure–property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. J Phys Chem B. 2005;109(43):20565–71.

    Article  CAS  Google Scholar 

  87. Burden FR. Molecular identification number for substructure searches. J Chem Inf Comput Sci. 1989;29(3):225–7. doi:10.1021/ci00063a011.

    Article  CAS  Google Scholar 

  88. Pearlman RS, Smith KM. Metric validation and the receptor-relevant subspace concept. J Chem Inf Comput Sci. 1999;39(1):28–35. doi:10.1021/ci980137x.

    Article  CAS  Google Scholar 

  89. Gao H. Application of BCUT metrics and genetic algorithm in binary QSAR analysis. J Chem Inf Comput Sci. 2001;41(2):402–7. doi:10.1021/ci000306p.

    Article  CAS  Google Scholar 

  90. Stanton DT. Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J Chem Inf Comput Sci. 1998;39(1):11–20. doi:10.1021/ci980102x.

    Google Scholar 

  91. Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. 2nd ed. Weinheim: Wiley-VCH; 2009.

  92. Krzanowski WJ. Principles of multivariate analysis: a user’s perspective. Oxford: Oxford University Press; 2000.

    Google Scholar 

  93. Todeschini R, Consonni V, Mauri A, Pavan M. Detecting “bad” regression models: multicriteria fitness functions in regression analysis. Analytica Chimica Acta. 2004;515(1):199–208. doi:10.1016/j.aca.2003.12.010.

    Article  CAS  Google Scholar 

  94. Chiou J. Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Comput Chem Eng. 1999;23(9):1277–91. doi:10.1016/s0098-1354(99)00290-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Gharagheizi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavisafavi, S.M., Mirkhani, S.A., Gharagheizi, F. et al. A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids. J Therm Anal Calorim 111, 235–246 (2013). https://doi.org/10.1007/s10973-012-2207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2207-8

Keywords

Navigation